Multi-Tenant Data Architecture

June 2006, Frederick Chong, Gianpaolo Carraro, and Roger Wolter, Microsoft

Corporation

Introduction

Trust, or the lack thereof, is the number one factor blocking the adoption
of software as a service (SaaS). A case could be made that data is the
most important asset of any business—data about products, customers,
employees, suppliers, and more. And data, of course, is at the heart of
SaaS. SaaS applications provide customers with centralized, network-
based access to data with less overhead than is possible when using a
locally-installed application. But in order to take advantage of the
benefits of Saas, an organization must surrender a level of control over
its own data, trusting the SaaS vendor to keep it safe and away from

prying eyes.

To earn this trust, one of the highest priorities for a prospective SaaS
architect is creating a SaaS data architecture that is both robust and
secure enough to satisfy tenants or clients who are concerned about
surrendering control of vital business data to a third party, while also
being efficient and cost-effective to administer and maintain.

This is the second article in our series about designing multi-tenant

applications. The first article, Architecture Strategies for Catching the
Long Tail, introduced the SaaS model at a high level and discussed its
challenges and benefits. It is available on MSDN. Other articles in the

http://learncooltech.com/multi-tenant-data-architecture/
https://msdn.microsoft.com/en-us/library/aa479069.aspx

series will focus on topics such as workflow and user interface design,
overall security, and others.

In this article, we'll look at the continuum between isolated data and
shared data, and identify three distinct approaches for creating data
architectures that fall at different places along the continuum. Next, we'll
explore some of the technical and business factors to consider when
deciding which approach to use. Finally, we'll present design patterns for
ensuring security, creating an extensible data model, and scaling the
data infrastructure.

Three Approaches to
Managing Multi-Tenant Data

The distinction between shared data and isolated data isn't binary.
Instead, it's more of a continuum, with many variations that are possible
between the two extremes.

Isolated « * Shared

Data architecture is an area in which the optimal degree of isolation for a

Saa$S application can vary significantly depending on technical and
business considerations. Experienced data architects are used to
considering a broad spectrum of choices when designing an architecture
to meet a specific set of challenges, and SaaS is certainly no exception.
We shall examine three broad approaches, each of which lies at a
different location in the continuum between isolation and sharing.

Isolated Shared

separated DB | Separate S5chema | Shared Schema

Separate Databases

Storing tenant data in separate databases is the simplest approach to
data isolation.

Tenant Tenant Tenant
132 680 4711

Figure 1. This approach uses a different database for each tenant

Computing resources and application code are generally shared
between all the tenants on a server, but each tenant has its own set of
data that remains logically isolated from data that belongs to all other
tenants. Metadata associates each database with the correct tenant, and
database security prevents any tenant from accidentally or maliciously
accessing other tenants’ data.

Giving each tenant its own database makes it easy to extend the
application’s data model (discussed later) to meet tenants’ individual
needs, and restoring a tenant's data from backups in the event of a
failure is a relatively simple procedure. Unfortunately, this approach
tends to lead to higher costs for maintaining equipment and backing up
tenant data. Hardware costs are also higher than they are under

alternative approaches, as the number of tenants that can be housed on
a given database server is limited by the number of databases that the
server can support. (Using autoclose to unload databases from memory
when there are no active connections can make an application more
scalable by increasing the number of databases each server can
support.)

Separating tenant data into individual databases is the “premium”
approach, and the relatively high hardware and maintenance
requirements and costs make it appropriate for customers that are
willing to pay extra for added security and customizability. For example,
customers in fields such as banking or medical records management
often have very strong data isolation requirements, and may not even
consider an application that does not supply each tenant with its own
individual database.

Shared Database, Separate
Schemas

Another approach involves housing multiple tenants in the same
database, with each tenant having its own set of tables that are grouped
into a schema created specifically for the tenant.

Tenant 132 o Tenant 680

Tenant 4711

Figure 2. In this approach each tenant has its own separate set of
tables in a common database

When a customer first subscribes to the service, the provisioning
subsystem creates a discrete set of tables for the tenant and associates
it with the tenant’'s own schema. You can use the SQL CREATE command
to create a schema and authorize a user account to access it. For
example, in Microsoft SQL Server 2005:

CREATE SCHEMA ContosoSchema AUTHORIZATION Contoso

The application can then create and access tables within the tenant’s
schema using the SchemaName.TableName convention:

CREATE TABLE ContosoSchema.Resumes (EmployeeID int
identity primary key,
Resume nvarchar (MAX))

After the schema is created, it is set as the default schema for the tenant
account;

ALTER USER Contoso WITH DEFAULT SCHEMA = ContosoSchema

A tenant account can access tables within its default schema by
specifying just the table name, instead of using the
SchemaName.TableNameconvention. This way, a single set of SQL
statements can be created for all tenants, which each tenant can use to
access its own data:

SELECT * FROM Resumes

Like the isolated approach, the separate-schema approach is relatively
easy to implement, and tenants can extend the data model as easily as
with the separate-database approach. (Tables are created from a
standard default set, but once they are created they no longer need to
conform to the default set, and tenants may add or modify columns and
even tables as desired.) This approach offers a moderate degree of
logical data isolation for security-conscious tenants, though not as much
as a completely isolated system would, and can support a larger number
of tenants per database server.

A significant drawback of the separate-schema approach is that tenant
data is harder to restore in the event of a failure. If each tenant has its
own database, restoring a single tenant’'s data means simply restoring
the database from the most recent backup. With a separate-schema
application, restoring the entire database would mean overwriting the
data of every tenant on the same database with backup data, regardless
of whether each one has experienced any loss or not. Therefore, to
restore a single customer’s data, the database administrator may have
to restore the database to a temporary server, and then import the
customer’s tables into the production server—a complicated and
potentially time-consuming task.

The separate schema approach is appropriate for applications that use a
relatively small number of database tables, on the order of about 100
tables per tenant or fewer. This approach can typically accommodate
more tenants per server than the separate-database approach can, so
you can offer the application at a lower cost, as long as your customers
will accept having their data co-located with that of other tenants.

Shared Database, Shared
Schema

A third approach involves using the same database andthe same set of
tables to host multiple tenants’ data. A given table can include records
from multiple tenants stored in any order; a Tenant ID column
associates every record with the appropriate tenant.

o 324965 | 2006-02-21

4l 6] 132 115468 | 2006-04-08)
4 680 654109 | 2006-03-27)
4711 | 324956 | 2006-02-23 ",

Figure 3. In this approach, all tenants share the same set of tables,
and a Tenant ID associates each tenant with the rows that it owns

Of the three approaches explained here, the shared schema approach
has the lowest hardware and backup costs, because it allows you to
serve the largest number of tenants per database server. However,
because multiple tenants share the same database tables, this approach
may incur additional development effort in the area of security, to
ensure that tenants can never access other tenants’ data, even in the
event of unexpected bugs or attacks.

The procedure for restoring data for a tenant is similar to that for the
shared-schema approach, with the additional complication that
individual rows in the production database must be deleted and then
reinserted from the temporary database. If there are a very large
number of rows in the affected tables, this can cause performance to
suffer noticeably for all the tenants that the database serves.

The shared-schema approach is appropriate when it is important that
the application be capable of serving a large number of tenants with a
small number of servers, and prospective customers are willing to
surrender data isolation in exchange for the lower costs that this
approach makes possible.

Choosing an Approach

Each of the three approaches described above offers its own set of
benefits and tradeoffs that make it an appropriate model to follow in
some cases and not in others, as determined by a number of business
and technical considerations. Some of these considerations are listed
below.

Economic Considerations

Applications optimized for a shared approach tend to require a larger
development effort than applications designed using a more isolated
approach (because of the relative complexity of developing a shared
architecture), resulting in higher initial costs. Because they can support
more tenants per server, however, their ongoing operational costs tend
to be lower.

Shared Approach

Isolated Approach s

Cost

Time

Figure 4. Cost over time for a hypothetical pair of SaaS applications;
one uses a more isolated approach, while the other uses a more
shared approach

Your development effort can be constrained by business and economic
factors, which can influence your choice of approach. The shared
schema approach can end up saving you money over the long run, but it

does require a larger initial development effort before it can start
producing revenue. If you are unable to fund a development effort of the
size necessary to build a shared schema application, or if you need to
bring your application to market more quickly than a large-scale
development effort would allow, you may have to consider a more
isolated approach.

Security Considerations

As your application will store sensitive tenant data, prospective
customers will have high expectations about security, and your service
level agreements (SLAs) will need to provide strong data safety
guarantees. A common misconception holds that only physical isolation
can provide an appropriate level of security. In fact, data stored using a
shared approach can also provide strong data safety, but requires the
use of more sophisticated design patterns.

Tenant Considerations

The number, nature, and needs of the tenants you expect to serve all
affect your data architecture decision in different ways. Some of the
following questions may bias you toward a more isolated approach,
while others may bias you toward a more shared approach.

= How many prospective tenants do you expect to target? You
may be nowhere near being able to estimate prospective use
with authority, but think in terms of orders of magnitude: are
you building an application for hundreds of tenants?
Thousands? Tens of thousands? More? The larger you expect
your tenant base to be, the more likely you will want to
consider a more shared approach.

m How much storage space do you expect the average tenant’s
data to occupy? If you expect some or all tenants to store very

large amounts of data, the separate-database approach is
probably best. (Indeed, data storage requirements may force
you to adopt a separate-database model anyway. If so, it will be
much easier to design the application that way from the
beginning than to move to a separate-database approach later
on.)

= How many concurrent end users do you expect the average
tenant to support? The larger the number, the more
appropriate a more isolated approach will be to meet end-user
requirements.

= Do you expect to offer any per-tenant value-added services,
such as per-tenant backup and restore capability? Such services
are easier to offer through a more isolated approach.

Isolated Shared

(ot o oo
(i o
(e v i i

Figure 5. Tenant-related factors and how they affect “isolated versus
shared” data architecture decisions

Regulatory Considerations

Companies, organizations, and governments are often subject to
regulatory law that can affect their security and record storage needs.

Investigate the regulatory environments that your prospective
customers occupy in the markets in which you expect to operate, and
determine whether they present any considerations that will affect your
decision.

Skill Set Considerations

Designing single-instance, multi-tenant architecture is still a very new
skill, so subject matter expertise can be hard to come by. If your
architects and support staff do not have a great deal of experience
building SaaS applications, they will need to acquire the necessary
knowledge, or you will have to hire people that already have it. In some
cases, a more isolated approach may allow your staff to leverage more
of its existing knowledge of traditional software development than a
more shared approach would.

Realizing Multi-Tenant Data
Architecture

The remainder of this article details a number of patterns that can help
you plan and build your SaaS application. As we discussed in our
introductory article, a well-designed SaaS application is distinguished by
three qualities: scalability, configurability, and multi-tenant efficiency.
The table below lists the patterns appropriate for each of the three
approaches, divided into sections representing these three qualities.

Optimizing for multi-tenant efficiency in a shared environment must not
compromise the level of security safeguarding data access. The security
patterns listed below demonstrate how you can design an application

https://msdn.microsoft.com/en-us/library/aa479069.aspx

with “virtual isolation” through mechanisms such as permissions, SQL
views, and encryption.

Configurability allows SaaS tenants to alter the way the application
appears and behaves without requiring a separate application instance
for each individual tenant. The extensibility patterns describe possible
ways you can implement a data model that tenants can extend and
configure individually to meet their needs.

The approach you choose for your SaaS application’s data architecture
will affect the options available to you for scaling it to accommodate
more tenants or heavier usage. The scalability patterns address the
different challenges posed by scaling shared databases and dedicated
databases.

Table 1. Appropriate Patterns for SaaS Application

Approach Security Extensibility Scalability
Patterns Patterns Patterns
Separate m Trusted m Custom = Single
Databases Database Columns Tenant
Connections Scaleout
m Secure
Database
Tables
m Tenant Data
Encryption
Shared m Trusted m Custom m Tenant-
Database, Databage Columns Ba;ed
< Connections Horizontal
eparate m Secure Partitioning

Schemas Database

https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sepdat
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tdc
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sdt
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tde
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_cc
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sts
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sdss
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tdc
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sdt
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_cc
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tbhp

Tables
m Tenant Data

Encryption
Shared m Trusted m Preallocated m Tenant-
Database, Database Fields Based
Connections = Name-Value Horizontal
Shared . . L
m Tenant View Pairs Partitioning
m Tenant Data
Encryption

Security Patterns

Building adequate security into every aspect of the application is a
paramount task for any Saa$S architect. Promoting software as a service
basically means asking potential customers to relinquish some control of
their business data. Depending on the application, this can include
extremely sensitive information about finances, trade secrets, employee
data, and more. A secure SaaS application is one that provides defense
in depth, using multiple defense levels that complement one another to
provide data protection in different ways, under different circumstances,
against both internal and external threats.

Building security into a SaaS application means looking at the application
on different levels and thinking about where the risks lie and how to
address them. The security patterns discussed in this section rely on
three underlying patterns to provide the right kinds of security in the
right places:

https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sdt
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tde
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_sdshs
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tdc
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tvf
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tde
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_paf
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_nvp
https://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tbhp

m Filtering: Using an intermediary layer between a tenant and a
data source that acts like a sieve, making it appear to the
tenant as though its data is the only data in the database.

= Permissions: Using access control lists (ACLs) to determine who
can access data in the application and what they can do with it.

= Encryption: Obscuring every tenant’s critical data so that it will
remain inaccessible to unauthorized parties even if they come
into possession of it.

Keep these patterns in mind as you read the rest of this section.

Trusted Database Connections

In a multi-tier application environment application architects traditionally
use two methods to secure access to data stored in
databases:impersonation, and a trusted subsystem account.

With the impersonation access method, the database is set up to allow
individual users to access different tables, views, queries, stored
procedures, and other database objects. When an end-user performs an
action that directly or indirectly requires a call to a database, the
application presents itself to the database as that user, literally
impersonating the user for the purposes of accessing the database. (In
technical terms, the application employs the user's security context). A
mechanism such as Kerberos delegation can be used to allow the
application process to connect to the database on behalf of the user.

User_ID = "jdoe”

App. Server

dr? d]
e “SuperApp” Server

Security
Service

Figure 6. An application connects to a database using impersonation

With the trusted subsystem access method, the application always
connects to the database using its own application process identity,
independent of the identity of the user; the server then grants the
application access to the database objects that the application can read
or manipulate. Any additional security must be implemented within the
application itself to prevent individual end users from accessing any
database objects that should not be exposed to them. This approach
makes security management easier, eliminating the need to configure
access to database objects on a per-user basis, but it means giving up
the ability to secure database objects for individual users.

User ID =
“SuperApp”

Database
Server

App. Server

l.l‘d [
N “SuperApp"

Figure 7. An application connects to a database as a trusted
subsystem

In a SaaS application, the concept of “users” is a bit more complicated
than in traditional applications, because of the distinction between a
tenant and an end user. The tenant is an organization that uses the
application to access its own data store, which is logically isolated from
data stores belonging to any other tenants. Each tenant grants access to
the application to one or more end users, allowing them to access some
portion of the tenant’'s data using end user accounts controlled by the
tenant.

In this scenario, you can use a hybrid approach to data access that
combines aspects of both the impersonation and trusted subsystem
access methods. This allows you to take advantage of the database
server's native security mechanisms to enforce the maximum logical
isolation of tenant data without creating an unworkably complex security
model.

Tenant
"Contoso”

User ID = “Contoso” Datah;sé
Server

US’Er_ID = ._jd'::'e. App_ SEI"H'EI'
“SuperApp”

Securhﬁ

service
Figure 8. A SaaS application connects to a database using a
combination of the impersonation and trusted subsystem approaches

This approach involves creating a database access account for each
tenant, and using ACLs to grant each of these tenant accounts access to
the database objects the tenant is allowed to use. When an end user
performs an action that directly or indirectly requires a call to a
database, the application uses credentials associated with the tenant
account, rather than credentials associated with the end user. (One way
for the application to obtain the proper credentials is through
impersonation, in conjunction with a credentialing system like Kerberos.
A second approach is to use a security token service that returns an
actual set of encrypted login credentials established for the tenant, that
the application process can then submit to the database.) The database
server does not distinguish between requests originating from different
end users associated with the same tenant, and grants all such requests
access to the tenant’s data. Within the application itself, security code

prevents end users from receiving and modifying any data that they are
not entitled to access.

For example, consider an end user of a customer relations management
(CRM) application who performs an operation that queries the database
for customer records matching a certain string. The application submits
the query to the database using the security context of the tenant, so
instead of returning all of the matching records in the database, the
query only retrieves the matching rows from the tables the tenant is
allowed to access. So far, so good—but suppose the end user’s role only
allows her to access records of customers located within a certain
geographic region. (For more information about roles, see the section
“Authorization” in Architecture Strategies for Catching the Long Tail, the
first article in this series.) The application must intercept the query
results and only present the user with the records that she is entitled to
see.

Secure Database Tables

To secure a database on the table level, use SQL's GRANT command to
grant a tenant user account access to a table or other database object:

GRANT SELECT, UPDATE, INSERT, DELETE ON [TableName] FOR
[UserName]

This adds the user account to the ACL for the table. If you use the hybrid
approach to database access discussed earlier, in which end users are
associated with the security contexts of their respective tenants, this
only needs to be done once, during the tenant provisioning process; any
end user accounts created by the tenant will be able to access the table.

https://msdn.microsoft.com/en-us/library/aa479069.aspx

This pattern is appropriate for use with the separate-database and
separate-schema approaches. In the separate-database approach, you
can isolate data by simply restricting access on a database-wide level to
the tenant associated with that database, although you can also use this
pattern on the table level to create another layer of security.

Tenant View Filter

SQL views can be used to grant individual tenants access to some of the
rows in a given table, while preventing them from accessing other rows.

In SQL, a view is a virtual table defined by the results of a SELECT query.
The resulting view can then be queried and used in stored procedures as
if it were an actual database table. For example, the following SQL
statement creates a view of a table called Employees, which has been
filtered so that only the rows belonging to a single tenant are visible:

CREATE VIEW TenantEmployees AS

SELECT * FROM Employees WHERE TenantID = SUSER_SID()

This statement obtains the security identifier (SID) of the user account
accessing the database (which, you'll recall, is an account belonging to
thetenant, not the end user) and uses it to determine which rows should
be included in the view. (The example assumes that the unique tenant ID
number is identical to the tenant’s SID. If this is not the case, one or
more additional steps would be required to associate each tenant with
the correct rows.) Each individual tenant’s data access account would be
granted permission to use the TenantEmployees view, but granted no
permissions to the Employees source table itself. You can build queries
and shared procedures to take advantage of views, which provides

tenants with the appearance of data isolation even within a multi-tenant
database.

This pattern is slightly more complex than the Secure Database Tables
pattern, but is an appropriate way to secure tenant data in a shared-
schema application, in which multiple tenants share the same set of
tables.

Tenant Data Encryption

A way to further protect tenant data is by encrypting it within the
database, so that data will remain secure even if it falls into the wrong
hands.

Cryptographic methods are categorized as either symmetric or
asymmetric. In symmetric cryptography, a key is generated that is used
to encrypt and decrypt data. Data encrypted with a symmetric key can
be decrypted with the same key. In asymmetric cryptography (also called
public-key cryptography), two keys are used, designated the public key
and the private key. Data that is encrypted with a given public key can
only be decrypted with the corresponding private key, and vice versa.
Generally, public keys are distributed to any and all parties interested in
communicating with the key holder, while private keys are held secure.
For example, if Alice wishes to send an encrypted message to Bob, she
obtains Bob’s public key through some agreed-upon means, and uses it
to encrypt the message. The resulting encrypted message, or cyphertext,
can only be decrypted by someone in possession of Bob's private key (in
practice, this should only be Bob). This way, Bob never has to share his
private key with Alice. To send a message to Bob using symmetric
encryption, Alice would have to send the symmetric key separately—
which runs the risk that the key might be intercepted by a third party
during transmission.

Public-key cryptography requires significantly more computing power
than symmetric cryptography; a strong key pair can take hundreds or
even thousands of times as long to encrypt and decrypt data as a
symmetric key of similar quality. For SaaS applications in which every
piece of stored data is encrypted, the resulting processing overhead can
render public-key cryptography infeasible as an overall solution. A better
approach is to use a key wrapping system that combines the advantages
of both systems.

With this approach, three keys are created for each tenant as part of the
provisioning process: a symmetric key and an asymmetric key pair
consisting of a public key and a private key. The more-efficient
symmetric key is used to encrypt the tenant’s critical data for storage. To
add another layer of security, a public/private key pair is used to encrypt
and decrypt the symmetric key, to keep it secure from any potential
interlopers.

When an end user logs on, the application uses impersonation to access
the database using the tenant’s security context, which grants the
application process access to the tenant's private key. The application
(still impersonating the tenant, of course) can then use the tenant's
private key to decrypt the tenant's symmetric key and use it to read and
write data.

This is another example of the defense-in-depth principle in action.
Accidental or malicious exposure of tenant data to other tenants—a
nightmare scenario for the security-conscious SaaS provider—is
prevented on multiple levels. The first line of defense, at the database
level, prevents end users from accessing the private data of other
tenants. If a bug or a virus in the database server were to cause an
incorrect row to be delivered to the tenant, the encrypted contents of
the row would be useless without access to the tenant's private key.

The importance of encryption increases the closer a SaaS application is
to the “shared” end of the isolated/shared continuum. Encryption is
especially important in situations involving high-value data or privacy
concerns, or when multiple tenants share the same set of database
tables.

Because you can't index encrypted columns, selecting which columns of
which tables to encrypt involves making a tradeoff between data security
and performance. Think about the uses and sensitivity of the various
kinds of data in your data model when making decisions about
encryption.

Extensibility Patterns

As designed, your application will naturally include a standard database
setup, with default tables, fields, queries, and relationships that are
appropriate to the nature of your solution. But different organizations
have their own unique needs that a rigid, inextensible default data
model won't be able to address. For example, one customer of a SaaS
job-tracking system might have to store an externally generated
classification code string with each record to fully integrate the system
with their other processes. A different customer may have no need for a
classification string field, but might require support for tracking a
category ID number, an integer. Therefore, in many cases you will have
to develop and implement a method by which customers can extend
your default data model to meet their needs, without affecting the data
model that other customers use.

Preallocated Fields

One way to make your data model extensible is to simply create a preset
number of custom fields in every table you wish to allow tenants to
extend.

345 ! Ted

1970-07-02 | null "Paid" null
777 \\ Kay 1956-09-25 | "65046" | null null
1017 ({ Mary 1962-12-21 | null null null
345 // Ned 1940-03-08 | null "Paid* null
438 \\| Pat 1952-11-04 | null "San Francisco" | "Yes"

Figure 9. A table with a preset collection of custom fields, labeled C1
through C3

In the previous figure, records from different customers are
intermingled in a single table; a tenant ID field associates each record
with an individual tenant. In addition to the standard set of fields, a
number of custom fields are provided, and each customer can choose
what to use these fields for and how data will be collected for them.

What about data types? You could simply choose a common data type
for each custom field you create, but customers are likely to find this
approach unnecessarily restrictive—what if a customer has a need for
three additional string fields and you've only provided one string field,
one integer field, and one boolean field? One way to provide this kind of
flexibility is to use the string data type for every custom field, and use

metadata to track the “real” data type the tenant wishes to use.

Add Hew Customer
| i Homa
O Business

Originating Zip Code:

l

Figure 10. A custom field on a Web page, defined by an entry in a
metadata table

In the example above, a tenant has used the application’s extensibility
features to add a text box called “Originating ZIP Code” to a data entry
screen, and mapped the text box to a custom field called C1. When
creating the text box, the tenant used validation logic (not shown) to
require that the text box contain an integer. As implemented, this
custom field is defined by a record in a metadata table that includes the
tenant’s unique ID number (1017), the label the tenant has chosen for
the field (“Originating ZIP Code”), and the data type the tenant wants to
use for the field (“int”).

You can track field definitions for all of the application’s custom fields in
a single metadata table, or use a separate table for each custom field;
for example, a “C1” table would define custom field C1 for every tenant
that uses it, a “C2" table would do the same for custom field C2, and so

on.
893 *Subscriber?® bool *Subscription Code® | string |
1017 “Originating Zip Code:®| int mull null
56 *Expires” date "AUtO Review?® bool

Table: ClExtensionToble Tabde: CAExtensson Table
893 *Subscriber?* boaol 893 *Subscription Code* | string
1017 “Originating Zip Code:") it 564 “Auto Review?" bool
564 *Ewpires” date

Figure 11. Storing field definitions in a single metadata table, top, and
in separate tables for each custom field

The main advantage of using separate tables is that each field-specific
table only contains rows for the tenants that use that field, which saves
space in the database. (With the single-table approach, every tenant that

uses at least one custom field gets a row in the combined table, with null
fields representing available custom fields that the tenant has not used).
The downside of using separate tables is that it increases the complexity
of custom field operations, requiring you to use SQL JoIN statements to
survey all of the custom field definitions for a single tenant.

When an end user types a quantity into the field and saves the record,
the application casts the value for Originating ZIP Code to a string before
creating or updating the record in the database. Whenever the
application retrieves the record, it checks the metadata table for the data
type to use and casts the value in the custom field back to its original

type.

Name-Value Pairs

The Preallocated Fields pattern explained in the previous section is a
simple way to provide a mechanism for tenants to extend and customize
the application’s data model. However, this approach has certain
limitations. Deciding how many custom fields to provide in a given table
involves making a tradeoff. Too few custom fields, and tenants will feel
restricted and limited by the application; too many, and the database
becomes sparse and wasteful, with many unused fields. In extreme
cases, both can happen, with some tenants under-using the custom
fields and others demanding even more.

One way to avoid these limitations is to allow customers to extend the
data model arbitrarily, storing custom data in a separate table and using
metadata to define labels and data types for each tenant’s custom fields.

FirstName | BithOste | Record

345 il Ted 1970-07-02 | 893

777 A\ Kay 1956-09-25 | null

T84 /{ Mary 1962-12-21 | 564

345 /) Ned 1940-03-08 | 117 784 *Expire” date
438\ Pat 1952-11-04 | 301 926 | 5550 *Affiliation® | string i

Ll
o T .
T R R L [TTTTIT

Figure 12. An extension table allows each tenant to define an arbitrary
number of custom fields

Here, a metadata table stores important information about every
custom field defined by every tenant, including the field's name (label)
and data type. When an end user saves a record with a custom field, two
things happen. First, the record itself is created or updated in the
primary data table; values are saved for all of the predefined fields, but
not the custom field. Instead, the application creates a unique identifier
for the record and saves it in the Record ID field. Second, a new row is
created in the extension table that contains the following pieces of
information:

m The ID of the associated record in the primary data table.

= The extension ID associated with the correct custom field
definition.

m The value of the custom field in the record that's being saved,
cast to a string.

This approach allows each tenant to create as many custom fields as
necessary to meet its business needs. When the application retrieves a

customer record, it performs a lookup in the extension table, selects all
rows corresponding to the record ID, and returns a value for each
custom field used. To associate these values with the correct custom
fields and cast them to the correct data types, the application looks up
the custom field information in metadata using the extension IDs
associated with each value from the extension table.

This approach makes the data model arbitrarily extensible while
retaining the cost benefits of using a shared database. The main
disadvantage of this approach is that it adds a level of complexity for
database functions, such as indexing, querying, and updating records.
This is typically the best approach to take if you wish to use a shared
database, but also anticipate that your customers will require a
considerable degree of flexibility to extend the default data model.

Custom Columns

The simplest kind of extensible data model is one in which columns can
be added to tenants’ tables directly.

Empln:.reella‘({ FirstName | BirthDate | LastReview | Branch

653)| Pat 1952-11-04 | null "San Francisco"
1310 A\ Tom 1949-12-14 | 2006-01-30) "London®

280 ({ Surendra | 1973-09-12 | 2005-11-08 "Bangalore"
985 /A Christine | 1981-03-26 | 2006-06-09) "San Francisco”
1701 \\| Gordon | 1964-08-20 | null "Toronto"

Figure 13. Custom rows can be added to a dedicated table without
altering the data model for other tenants

This pattern is appropriate for separate-database or separate-schema
applications, because each tenant has its own set of tables that can be
modified independently of those belonging to any other clients. From a

data model standpoint, this is the simplest of the three extensibility
patterns, because it does not require you to track data extensions
separately. On the application architecture side, though, this pattern can
sometimes be more difficult to implement, because it allows tenants to
vary the number of columns in a table. Even if the Custom Columns
pattern is available to you, you may consider using a variation on the
Preallocated Fields or Name-Value Pairs pattern to reduce development
effort, allowing you to write application code that can assume a known
and unchanging number of fields in each table.

Using Data Model Extensions

Whatever method you use to create an extensible data model, it must be
paired with a mechanism for integrating the additional fields into the
application’s functionality. Any custom field implemented by a customer
will require a corresponding modification to the business logic (so the
application can use the custom data), the presentation logic (so that
users have a way to enter the custom data as input and receive it as
output), or both. The configuration interface you present to the
customer should therefore provide ways to modify all three, preferably
in an integrated fashion. (Providing mechanisms through which
customers may modify the business logic and user interface will be
addressed in a future article in this series.)

Scalability Patterns

Large-scale enterprise software is intended to be used by thousands of
people simultaneously. If you have experience building enterprise
applications of this sort, you know first-hand the challenges of creating a
scalable architecture. For a Saa$S application, scalability is even more
important, because you'll have to support data belonging to all your

customers. For independent software vendors (ISVs) accustomed to
building on-premise enterprise software, supporting this kind of user
base is like moving from the minor leagues to the majors: the rules may
be familiar, but the game is played on an entirely different level. Instead
of a widely deployed, business-critical enterprise application, you're
really building an Internet-scale system that needs to actively support a
user base potentially numbering in the millions.

Databases can be scaled up (by moving to a larger server that uses more
powerful processors, more memory, and quicker disk drives) and scaled
out (by partitioning a database onto multiple servers). Different
strategies are appropriate when scaling a shared database versus
scaling dedicated databases. (When developing a scaling strategy, it's
important to distinguish between scaling your application (increasing the
total workload the application can accommodate) and scaling your data
(increasing your capacity for storing and working with data). This article
focuses on scaling data specifically.)

Scaling Techniques

The two main tools to use when scaling out a database out are
replication and partitioning. Replication involves copying all or part of a
database to another location, and then keeping the copy or copies
synchronized with the original. Single master replication, in which only
the original (orreplication master) can be written to, is much easier to
manage than multi-master replication, in which some or all of the copies
can be written to and some kind of synchronization mechanism is used
to reconcile changes between different copies of the data.

Partitioning involves pruning subsets of the data from a database and
moving the pruned data to other databases or other tables in the same
database. You can partition a database by relocating whole tables, or by

splitting one or more tables up into smaller tables horizontally or
vertically. Horizontal partitioning means that the database is divided into
two or more smaller databases using the same schema and structure,
but with fewer rows in each table. Vertical partitioning means that one or
more individual tables are divided into smaller tables with the same
number of rows, but with each table containing a subset of the columns
from the original. Replication and partitioning are often used in
combination with one another when scaling databases.

Tenant-Based Horizontal
Partitioning

A shared database should be scaled when it can no longer meet baseline
performance metrics, as when too many users are trying to access the
database concurrently or the size of the database is causing queries and
updates to take too long to execute, or when operational maintenance
tasks start to affect data availability.

The simplest way to scaleout a shared database is through horizontal
(row-based) partitioning based on tenant ID. SaaS shared databases are
well-suited to horizontal partitioning because each tenant has its own set
of data, so you can easily target individual tenant data and move it.

However, don’t assume, that if you have 100 tenants and want to
partition the database five ways, you can simply count off 20 tenants at a
time and move them. Different tenants can place radically different
demands on an application, and it's important to plan carefully to avoid
simply creating smaller, but still overtaxed, partitions while other
partitions go underused.

If you're experiencing application performance problems because too
many end users are accessing the database concurrently, consider

partitioning the database to equalize the total number of active end-user
accounts on each server. For example, if your existing database serves
tenants A and B with 600 active users each, and tenants C, D, and E with
400 active users each, you could partition the database by moving
tenants C, D, and E to a new server; both databases would then serve
1200 users each.

If you're experiencing problems relating to the size of the database, such
as the length of time it takes to perform queries, a more effective
partition method might be to target database size instead, assigning
tenants to database servers in such a way as to roughly equalize the
amount of data on each one.

The partitioning method you choose can have a significant impact on
application development. Whichever method you choose, it's important
that you can accurately survey and report on whatever metrics you
intend to use to make partitioning decisions. Building support for
monitoring into your application will help you get an accurate view of
your tenants’ usage patterns and needs. Also, it's likely that you'll need to
repartition your data periodically, as your tenants evolve and change the
way they work. Choose a partitioning strategy that you can execute
when needed without unduly affecting production systems.

Occasionally, a tenant may have enough users or use enough data to
justify moving the tenant to a dedicated database of its own. See the
next section, “Single Tenant Scaleout,” for help performing further
scaling.

The Tenant-based Horizontal Partitioning pattern is appropriate for use
with shared-schema applications, which impose some unusual
constraints on the familiar task of scaling a database. It provides a way
to scale a shared database while avoiding actions that will break the

application or harm performance (like, for example, splitting a tenant's
data across two or more servers inadvertently or unnecessarily).

Single Tenant Scaleout

If some or all tenants store and use a large amount of data, tenant
databases may grow large enough to justify devoting an entire server to
a single database that serves a single tenant. The scalability challenges in
this scenario are similar to those facing architects of traditional single-
tenant applications. With a large database on a dedicated server, scaling
up is the easiest way to accommodate continued growth.

If the database continues to grow, eventually it will no longer be cost-
effective to move it to a more powerful server, and you will have to scale
out by partitioning the database on to one or more additional servers.
Scaling out a dedicated database is different than scaling out a shared
one. With a shared database, the most effective method of scaling
involves moving entire sets of tenant data from one database to
another, so the nature of the data model that you use isn't particularly
relevant. When scaling a database that's dedicated to a single tenant, it
becomes necessary to analyze the kinds of data that are being stored to
determine the best approach.

The article Scaling Out SQL Server 2005 contains additional guidance and
suggestions about analyzing data for scaling out. The article explains
reference data, activity data, and resource data in detail, gives some
guidelines for replicating and partitioning data, and explains some
additional factors that affect scaleout. Some of the scaleout guidelines to
consider:

= Use replication to create read-only copies of data that
doesn’'t change very often. Some kinds of data rarely or never
change after the data is entered, such as part numbers or

https://msdn.microsoft.com/en-us/library/aa479364.aspx

employee Social Security numbers. Other kinds of data are
subject to active change for a defined period of time and then
archived, such as purchase orders. These kinds of data are
ideal candidates for one-way replication to any databases from
which they might be referenced.

= Location, location, location. Keep data close to other data that
references it. (“Close” in this sense generally means logically
proximate rather than physically proximate, although logical
proximity often implies physical proximity as well.) Consider the
relationships between different kinds of data when deciding
whether to separate them, and use replication to distribute
read-only copies of reference data among different databases
when appropriate.For example, if the act of retrieving a
customer record routinely involves selecting the customer’s
recent purchase orders from a different table, try to keep the
two tables in the same database, or use replication to create
copies of appropriate kinds of data. Try to find natural divisions
in the data that will minimize the amount of cross-database
communication that needs to take place. For example, data
associated with particular places can often be partitioned
geographically.

= |dentify data that shouldn’t be partitioned. Resource data,
such as warehouse inventory levels, are usually poor
candidates for replication or partitioning. Use scaleout
techniques to move other data off the server, leaving your
resource data more room to grow. If you have moved all the
data you can and still experience problems, consider scaling up
to a bigger server for the resource data.

m Use single-master replication whenever possible.
Synchronizing changes to multiple copies of the same data is
difficult, so avoid using multi-master replication if you can.
When replicated data must be changed, only allow changes to
be written to the master copy.

This pattern can apply to all three approaches, but only comes into play
when an individual tenant's data needs cannot be accommodated by a

single server. With the separate-database approach, if tenants’ data
storage needs are modest, each individual server might host dozens of
databases; in that case scaling a particular server involves simply moving
one or more databases to a new server and modifying the application’s
metadata to reflect the new data location.

Conclusion

The design approaches and patterns we've discussed in this article
should help you create the foundation layer of trust that's vital to the
success of your SaaS application. Designing a SaaS data architecture that
reconciles the competing benefits and demands of sharing and isolation
isn't a trivial task, but these approaches and patterns should help you
identify and resolve many of the critical questions you will face. The
ideas and recommendations presented here differ in the details, but
they all help you leverage the principles of configurability, scalability, and
multi-tenant efficiency to design a secure and extensible data
architecture for a SaaS application.

This article is by no means the last word in single-instance, multi-tenant
data architecture. Later in this series, we'll look at ways you can help
tenants put their data model extensions to good use through
presentation and workflow customization.

